1	(a cor i.e. C ₉ ⊦ not	rect method shown 126/14 (= 9) or 14x = 126 or x = 9 or (12 × 9) + 18 = 126 I ₁₈ e: correct formula only = 1	[1] [1]
	(b) (i) (ii)	all hydrogen atoms 1bp C—C bond atoms 1bp C=C 2 bp correct repeat unit continuation	[1] [1] [1] [1] [1]
	(iii)	bonds broken H-H +436 (kJ/mol) C=C +610 = +1046 (kJ/mo bonds formed 2C-H -415×2 kJ/mol C-C $-346 = -1176$ (kJ/mol) -130 kJ/mol / more energy released than absorbe or: bonds broken 3882 (kJ/mol) bonds formed 4012 (kJ/mol) -130 kJ/mol / more energy released than absorbe allow: ecf for final mark as long as the answer is not positive note: units not necessary	[1] [1] [1] [1] [1]
	(c) (i) (ii)	butan-1-ol or butan-2-ol or butanol CH_3 - CH_2 - $CH(Br)$ - CH_2Br CH_3 - Rr_2 = 1	[1] [2]
	(iii)	note: any other dibromobutane = 0 HI	[1]

2	(a	(i)	heat / roast / combustion / high temperature	[1]
			in air / oxygen any incorrect Chemistry MAX [1]	[1]
	((ii)	$ZnO + C \rightarrow Zn + CO$ OR $2ZnO + C \rightarrow 2Zn + CO_2$ the equation must balance, if not [0] not carbon monoxide as a reactant /	[1]
	(i	iii)	fractional distillation	[1] [1]
	(b)		making alloys / brass / named alloy which contains zinc	[1]
			galvanising / sacrificial protection / electroplating accept galvanising / one specific use which depends on galvanising zinc coated screws / roofing / buckets / sinks not just plating other metals	[1]
	((ii)	<u>positive</u> ions / cations not nuclei / atoms	[1]
			delocalised / free / mobile or sea of electrons	[1]
			bond is attraction between (positive) ions and delocalised electrons	[1]
			it is a good conductor because there are delocalised / free / mobile electrons Note must be clear that electrons are moving / carry charge / reason why it is a good conductor	[1]

[Total: 11]

3	(a)	(i)	(concentration) of reactants/CO and Cl_2 increases (concentration) of product decreases/COC l_2)	[1] [1
		(ii)	(decrease in pressure favours side) with more molecules or moles or side with bigger volume (of gas) NB [2] or [0]	[2]
	(b)	forv CO AC	vard reaction is exothermic ND because it is favoured by low temperatures or cool CEPT argument re back reaction	[1] [1]
	(c)	hyd carl	lrogen chloride or hydrochloric acid bon dioxide or carbonic acid or hydrogen carbonate	[1] [1]
	(d)	8e a 8e a 8e a if a	around both chlorine atoms between carbon and oxygen atoms around carbon atom around oxygen bond contains a line with no electrons, no marks for atoms joined by that line ore keying	[1] [1] [1] [1]

[Total: 12]

4	(a)	(i)	Burn sulphur in air (or oxygen)	[1]
		(ii)	as a <u>bleach</u>	[1]
		(iii)	kill bacteria/micro-organisms NOT prevents food going bad or rotten or decaying	[1]
	(b)	(decrease	[1]
		(ii)	exothermic	[1]
			endothermic, so forward reaction must be exothermic OR any similar explanation will be awarded the mark, for example The forward reaction is not favoured by an increase in temperature so it is exothermic (rather than endothermic)	[1]
		(iii)	Low enough for good yield High enough for (economic) rate Any similar explanation will be awarded the mark NOT just that it is the optimum temperature	[1] [1]
		(iv)	bubble into (conc) sulphuric acid add water NOT consequential	[1] [1]
				[TOTAL = 10]

				TOTAL = 14
			filter NOT if residue is lead nitrate evaporate or heat solution	[1] [1]
	(d)		Add excess lead oxide to nitric acid can imply excess	[1]
			torm nitrogen ANY TWO	[2]
		(ii)	<u>catalytic converter</u> react with carbon monoxide or hydrocarbons	
	(0)	(')	react at high temperatures (and high pressure)	[1]
	(c)	(i)	oxygen and nitrogen (in air)	[1]
		(ii)	melting or freezing or fusion or solidification	[1]
			vibrational	[1]
	(b)	(i)	close or tightly packed ordered or lattice	[1]
		(ii)	potassium nitrate \rightarrow potassium nitrite + oxygen	[1]
			$Pb(NO_3)_2 = PO + 2 NO_2 + \frac{1}{2} O_2$	
		.,	not balanced [1] ONLY $2Pb(NO_3)_2 = 2PbO + 4NO_2 + O_2$	
5	(a)	(i)	Correct equation	[2]

6	(a)		protons2electrons2neutrons4		[3]
	(b)	(i) (ii)	La ³⁺ + 3e- = La hydrogen bromine NOT Bromide caesium hydroxide ignore any comments abou	ut electrodes	[1] [1] [1] [1]
	(c)		metal hydroxide or hydroxid hydrogen	de ions	[1] [1]
	(d)		correct formula 1Ba to 2C <i>l</i> charges correct 8e around the anion All three points Two points ONLY [1] If covalent [0] out [2]		[2]
	(e)		alternating (positive and ne pattern	gative)	[1] [1]
	(f)	(i) (ii)	barium - oxygen or ionic bond forming energy releas bond breaking energy take more energy released	sed/exothermic n in/endothermic	[1] [1] [1] [1]